Technologia zmiennej geometrii w turbosprężarkach

Turbosprężarka z VGT

Turbosprężarka z VGT

O zjawisku "turbodziury" pisałem wczoraj. Jedną z metod rozwiązania tego problemu jest stosowanie w turbosprężarkach zmiennej geometrii. Na początek wyjaśnię, czego tak naprawdę dotyczy zmiana geometrii.

Otóż najczęściej spotykamy się z terminem "zmienna geometria łopatek lub "zmienna geometria turbiny". Przez wielu specjalistów, w tym także profesora Zdzisława Chłopka, z którym miałem przyjemność mieć zajęcia na Politechnice Warszawskiej, te określenia z punktu widzenia językowego są błędne.

Działanie turbosprężarki

Geometria turbiny czy pojedynczej łopatki nie ulega bowiem zmianie. I to jest niezaprzeczalny fakt. Moim zdaniem jednak oba terminy nie są błędne, ponieważ ruchome łopatki będące kierownicami zmieniają swoje położenie, a tym samym kształt, który razem tworzą. Patrząc więc na te ruchome łopatki jako całość, ich kształt, a tym samym geometria, faktycznie ulegają zmianie. Czym jest zmiana geometrii danej części? Zmianą położenia poszczególnych elementów, które składają się na tę część. Dlatego też w tym artykule będę używał wyżej wymienionych terminów.

W branży motoryzacyjnej technologia zmiennej geometrii łopatek oznaczana jest literami VGT bądź VTG. Pierwszy skrót pochodzi z języka angielskiego — Variable Geometry Turbocharger, rozwinięcie drugiego jest natomiast w języku niemieckim — Variable Turbinen Geometrie. Firma Honeywell zajmująca się produkcją turbosprężarek wprowadziła jeszcze jeden skrót VNT — Variable Nozzle Turbine. Wszystkie trzy oznaczają to samo.

Doładowanie mechaniczne: sprężarki Rootsa, Lysholma i typu G

Jak już wspomniałem, VGT służy zmniejszeniu odczuwalności czasu odpowiedzi turbosprężarki na wciśnięcie gazu. Prędkość obrotowa turbosprężarki jest ściśle uzależniona od ilości spalin i urządzenie to samo w sobie nie ma możliwości dostosowywania się do zmian prędkości obrotowych i obciążenia silnika. VGT umożliwia zmienność pewnych parametrów dzięki zmianie kąta nachylenia kierownic (ruchome łopatki umieszczone dookoła wirnika turbiny), które kierują strumień spalin na łopatki wirnika turbiny.

Zobacz również: Tylko na Autokult.pl

Dzięki regulacji kąta napływu spalin na łopatki wirnika prędkość obrotowa turbosprężarki nie jest już tak bardzo zależna od obrotów silnika. Zmiana kąta nachylenia łopatek odbywa się płynnie, przez co efekt "turbodziury" jest znacznie mniejszy i praktycznie nieodczuwalny dla kierowcy. Poprawia to efektywność przepływu spalin do turbiny, co przekłada się na korzystniejszą charakterystykę momentu obrotowego silnika.

Jak wygląda proces zmiany kąta nachylenia kierownic? Są one osadzone na ruchomym pierścieniu (6), którego kątowy obrót powoduje zmianę nachylenia łopatek (8). Spaliny wędrują na łopatki wirnika turbiny (2), a ciśnienie w kolektorze ssącym spowodowane pracą sprężarki wymusza działanie membrany siłownika (9). Do niego zamocowane jest natomiast ramię (4), które steruje obrotem pierścienia (6) z kierownicami.

Jak widać, praca tych elementów jest ściśle powiązana z ciśnieniem doładowania. Przy niskich obrotach silnikach łopatki są nachylone pod takim kątem, aby średnica przepływu powietrza była jak najmniejsza (a). Przyspiesza to prędkość spalin, które dzięki temu zwiększają obroty wirnika turbiny i silnik osiąga wyższą moc już przy niskich obrotach. Przy dużych prędkościach obrotowych silnika kierownice ustawiane są w taki sposób, aby zwiększyć średnicę przepływu powietrza (b). Prędkość spalin i tak już jest wystarczająca, a pamiętajmy, że ciśnienie doładowania nie może przekroczyć pewnego ustalonego poziomu.

Dla zrozumienia tego zjawiska najlepiej może posłużyć domowy odkurzacz. W normalnych warunkach, kiedy do rury odkurzacza niczego nie przykładamy, powietrze wciągane jest z taką prędkością, jaką jest w stanie zapewnić podciśnienie wytwarzane przez samo urządzenie. Jeśli przystawimy do rury rękę, nie zatykając jej całkowicie, usłyszymy gwizd i poczujemy wyraźnie mocniejszy ciąg działający na naszą rękę, który będzie się zwiększał wraz ze zmniejszaniem średnicy otworu, przez który wpada powietrze.

Dlaczego powinno się tankować do pełna? [poradnik]

W niektórych systemach VGT stosuje łopatki, które wsuwają się bądź wysuwają, zmieniając powierzchnię przepływu spalin. Takie rozwiązanie znalazło się np. w silnikach HDi Citroena.

Sterowanie cięgnem, które reguluje ruch obrotowy pierścienia z osadzonymi na nim kierownicami, może odbywać się poprzez pneumatyczny nastawnik reagujący na podciśnienie lub nadciśnienie oraz poprzez układ z siłownikiem elektropneumatycznym wraz z silnikiem krokowym. Jego sterowanie odbywa się za pomocą komputera, co zapewnia większą dokładność i swobodniejszą regulację kąta nachylenia ruchomych łopatek.

Technologia VGT jest z powodzeniem używana w silnikach wysokoprężnych, w których temperatura spalin jest niższa (rzędu 700–800o C) w porównaniu z silnikami benzynowymi (nawet 950o C). Tak wysoka temperatura w drugim przypadku powoduje problemy z doborem materiałów zwłaszcza na elementy ruchome, jak łopatki kierownic. Przełomu dokonało Porsche, które w 2006 roku zastosowało zmienną geometrię łopatek w modelu 911 Turbo (997). Materiały oraz technologia przejęta z lotnictwa pozwoliły na skonstruowanie takiej turbosprężarki z VGT, która z powodzeniem sprawdziła się w silniku benzynowym. Dokładny skład zastosowanych materiałów pozostaje tajemnicą, choć wiadomo, że na ruchome łopatki użyto odpornego na wysokie temperatury stopu niklu.



Źródło: AutoKult

Zobacz więcej artykułów z serii: Doładowanie silników

Podziel się:

Przeczytaj także:

Także w kategorii Poradniki i mechanika:

Leki zaburzające zdolność prowadzenia pojazdu [poradnik] Regeneracja wtryskiwaczy Common Rail Smarowanie mechanizmów różnicowych - czy wymiana oleju jest konieczna? Eksploatacja świec zapłonowych – ocena wyglądu świecy Łańcuchy tekstylne - lepsza alternatywa dla stalowych? Świece zapłonowe - budowa i zasada działania Jak eksploatować samochód z instalacją gazową? Tramwaj czy auto - kto ma pierwszeństwo? Amortyzatory o zmiennej charakterystyce tłumienia - ciecze magnetoreologiczne Amortyzatory o zmiennej charakterystyce tłumienia - sterowanie zaworami elektromagnetycznymi Porównanie napędu Mazda SKYACTIV kontra Škoda TSI&DSG Opony zimowe - na co zwrócić uwagę Škoda Octavia 1,2 TSI - którą wersję silnika i jaką skrzynię lepiej wybrać? Amortyzatory o zmiennej charakterystyce tłumienia Jak dbać o oświetlenie pojazdu? Jaka prędkość na autostradzie jest najlepsza? Strefa ruchu i strefa zamieszkania - czym się różnią? Dlaczego opona zimowa lepiej sprawdza się podczas zimy? Jak kupować używane auto z instalacją LPG? – strona techniczna Czujniki ciśnienia w oponach TPMS – jak to działa? Czy zakup oszczędnego silnika się zwróci? Wtryskiwacze Common Rail – zasada działania Jak zabezpieczyć auto przed solą? Światła w samochodzie - kiedy włączyć jakie?

Popularne w tym tygodniu:

6 legalnych sposobów na mandaty „Na mechanika” - nowy sposób na oszukiwanie kierowców Marki z najbardziej awaryjną klimatyzacją 3.0d: flagowy diesel BMW nie jest taki idealny, jak go malują Na tych benzynowych, sześciocylindrowych silnikach możesz polegać DEKRA 2017: najwytrzymalsze starsze i tanie samochody Samochody kompaktowe z prostymi silnikami benzynowymi Rozgrzany samochód jest dla dziecka śmiertelną pułapką Samochód nowy czy używany? Wszystko zależy od potrzeb Regeneracja części - co warto, a czego nie warto naprawiać? Wjazd do lasu – kiedy nie wolno tego robić, jakie czekają cię konsekwencje? Test fotelików ADAC 2017